


to 0.21 (Fig.6). Asymmetrical migration rates m between the four large leks ranged from less than 348 

0.01 to 0.12 (Fig.6). 349 

The estimates of 𝑁𝑒 were relatively similar in the four large leks (Fig.6), ranging from 12 350 

(95% CI 3–33) in LLC to 16 (95% CI 7–71) in NOI. Furthermore, the mean 𝑁𝑒 in the four leks was 351 

16 (95% CI 9–34). The meta-𝑁𝑒 estimated for the whole population was 15 (95% CI 8–34). The 352 

ratios 𝑁𝑒/N was always lower than 1 in the large leks (VEN = 0.93, LCC = 0.67, GdF = 0.52; not 353 

estimated for NOI) and at whole population level (0.15). 354 

 355 

Examining inbreeding influence on survival and recruitment 356 

 357 

The model with constant survival [ϕ(.), p(SEX)] was better supported than the models including 358 

one of three inbreeding metrics (Supplementary material S2, Table S3). Moreover, the slope 359 

coefficient of inbreeding metrics was close to 0 (PHt: -0.06±0.16; IR: 0.06±0.16; HL: 0.01±0.16), 360 

indicating a very small size effect. Overall, this indicates that survival was weakly affected by 361 

individual inbreeding regardless of the inbreeding metric considered. 362 

 Similarly, the model with constant recruitment [δ (.), p(SEX)] was better supported than 363 

the models incorporating the three inbreeding metrics (Supplementary material S2, Table S4). 364 

Furthermore, the slope coefficient of each metric was different of 0, (PHt: 0.21; IR: -0.39; HL: -365 

0.25) but the confidence intervals always included 0, thus suggesting a low accuracy of model 366 

estimates (PHt: -0.40–0.81; IR: -1.09–0.30; HL: -0.91–0.41). Therefore, inbreeding seemed to have 367 

a little influence on recruitment regardless of the metrics used to quantify inbreeding.   368 

 369 

Discussion 370 

 371 

Our study showed that the population of T. urogallus experienced a severe decline between 2010 372 

and 2015. We did not detect any Allee effect on survival and recruitment; by contrast, a behavioral 373 

response to a mate finding Allee effect was found, individuals of both sexes dispersing to avoid 374 

small leks. Survival was relatively constant over time, while recruitment was more variable. In 375 

parallel to this demographic decline, the population displayed a low genetic diversity and a high 376 

inbreeding (compared to that reported in this species, Segelbacher et al. 2002, 2003; Rodríguez-377 

Muñoz et al. 2007, Klinga et al. 2015). The effective population size at both lek and population 378 

levels was low. Furthermore, we did not find evidence of inbreeding depression as inbreeding 379 

affected neither survival nor recruitment probability.  380 

 381 

Demographic processes 382 

 383 

Our study revealed a dramatic population decline (-52%) over the 6-year period. The decline 384 

experienced by the population is likely caused by a loss of recruitment rather than decrease of adult 385 

survival; recruitment does not compensate the ‘normal’ adult mortality which leads to population 386 

decline. Indeed, the adult survival in the studied population was similar to that reported in other 387 

population of T. urogallus (Storch 2007 and references therein). The low temporal variation of 388 

survival probability indicates limited demographic and environmental stochasticity for this 389 

demographic parameter. This pattern is commonly found in relatively long-lived species in which 390 

selection favors phenotypic traits that reduce the temporal variance of adult survival (Gaillard & 391 
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Yoccoz 2003). Moreover, our analyses did not reveal any temporal trend for survival that could 392 

explain the population decline. By contrast, recruitment rate was more variable between years, with 393 

substantial drops in 2013 and 2015. The trend analysis did not reveal any statistically significant 394 

gradual changes of recruitment over time. However, the negative coefficient slope of time effect in 395 

the model suggests that we failed to detect a negative trend, probably due to a lack of statistical 396 

power; the small population size and the shortness of study period likely decreases model estimate 397 

accuracy. 398 

The cause of population decline remains unclear so far. The population loss was stronger 399 

in the large leks (-40%) in the small ones (-20%). This pattern indicates the absence of an Allee 400 

effect on population growth (called ‘demographic Allee effect’, Stephens et al. 1999); population 401 

growth is lower in large leks than in small leks. In addition, our results also indicate that survival 402 

and recruitment are not affected by lek size, which also suggest the absence of Allee effect on 403 

fitness components. By contrast, dispersal probabilities (both departure and arrival) were non-404 

random and indicated a behavioral response to ‘mate finding Allee effect’ (i.e. difficulty to locate 405 

mate due to low conspecific density). Both males and females had a lower probability of emigrating 406 

from large leks; in parallel, dispersers of both sexes more often immigrated into large leks. In 407 

tetraonids, females preferentially reproduce in large leks, which results in a higher reproductive 408 

success for the males attending these leks (Alatalo et al. 1992). Aggregation of individuals likely 409 

reduce the demographic Allee effect and limit the effects of demographic stochasticity in the largest 410 

leks. By contrast, it reduces the chance of new lek formation and enhances the risk of small lek 411 

disappearance (low ‘rescue effect’, Hanski et al. 1997).   412 

 The high variation of recruitment over time (and possibly over space) suggests that intrinsic 413 

and/or extrinsic factors affecting the recruitment process were the main drivers of population 414 

decline. Our study shows that recruitment variation involved was likely independent from lek size. 415 

However, environmental factors such as habitat loss and alteration could have a detrimental effect 416 

on female fecundity and chick survival, and therefore on adult recruitment few years later. Moss et 417 

al. (2008) showed that gradual shift from early to mid-April of spring warming reduced synchrony 418 

between the start of vegetation growth and peak of juvenile energetic demands, and potentially 419 

decreased female reproductive success. Rapid change in vegetation phenology in the Vosges 420 

Mountains also correlated with delayed peak of activity at capercaillie lek and suggests a negative 421 

impact of climatic factors on recruitment rate in this population (Ménoni et al. 2012). Genetic 422 

factors could also cause recruitment variation.  423 

 424 

Genetic processes 425 

 426 

Our study highlighted low genetic diversity and high inbreeding in this declining population. The 427 

mean allelic richness (2.64 at the whole population level), and the expected heterozygosity (0.44) 428 

are low compared to those reported in T. urogallus populations from central and northern Europe 429 

and relatively similar to those measured in small, fragmented populations (Segelbacher et al. 2002, 430 

2003; Rodríguez-Muñoz et al. 2007). The inbreeding coefficient 𝐹𝐼𝑆 (0.14) was among the highest 431 

reported in the range of T. urogallus (Segelbacher et al. 2002, 2003; Rodríguez-Muñoz et al. 2007, 432 

Klinga et al. 2015), close to the 𝐹𝐼𝑆 of 0.15 reported in a population from western Carpathians 433 

(Klinga et al. 2015). Fragmentation of the distribution range of the species during the 20th century 434 

(Storch 2007) led to the loss of genetic connectivity between the Alpine core population and 435 
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peripheral, small populations, as described by Segelbacher et al (2003). At that time, i.e. 436 

approximately 5–6 generations ago, the authors already reported high levels of genetic 437 

differentiation between the population in the Vosges Mountains and the Alpine population (𝐹𝑆𝑇 > 438 

0.10). It is thus very likely that the level of genetic differentiation between these two populations 439 

further increased, exacerbated by the decline of the population and the low lek-specific 𝑁𝑒. 440 

At the lek level, the ratio 𝑁𝑒/N < 1 results from the mating system of T. urogallus, in which 441 

few dominant males monopolize most of the mates, leading to a skewed reproductive success. This 442 

pattern is congruent with results from a previous study focusing on another grouse species with a 443 

lekking behaviour (Stiver et al. 2008). At the whole population level, the meta-𝑁𝑒 is far less than 444 

the sum of the lek-specific 𝑁𝑒. This likely results from a non-random dispersal (depending on lek 445 

size) that should result in asymmetric gene flow between small and large leks. Migration rates m 446 

between large leks are also asymmetric, which suggests that other social factors than lek size affects 447 

dispersal. A previous study on this population thus found that females disperse in response to 448 

inbreeding risks and males preferentially join leks composed of relatives (Cayuela et al. 2018b). 449 

Furthermore, landscape resistance (especially landform) also results in asymmetric gene flow in 450 

the population (Supplementary material S3). These results emphasize the importance of 451 

considering dispersal patterns and population genetic structuring for the estimation and the 452 

interpretation of 𝑁𝑒 (Wang & Whitlock 2003, Palstra & Ruzzante 2008). 453 

 Although we highlighted a high inbreeding level at both lek and population scales, we did 454 

not find evidence of inbreeding depression at the adult stage in our study system. Both survival and 455 

recruitment of adults were not affected by individual inbreeding. Given the small size of the 456 

population, one cannot rule out the possibility that the absence of significant effect was due to a 457 

low statistical power. That being said, for survival, the slope of coefficients associated with the 458 

inbreeding metrics were very close to 0, which suggests a small size effect rather than a low 459 

accuracy of the estimates. For recruitment, the accuracy of model estimates was low, likely to due 460 

to our small sample size. Inbreeding has been reported to negatively affect egg hatchability rate in 461 

the Greater prairie chicken (Westemeier et al. 1998), susceptibility to parasite and juvenile 462 

mortality in capercaillie (Isomursu et al. 2012) and male lifetime copulation success Black grouse 463 

(Höglund et al. 2002), no detrimental effect of inbreeding on survival at adult stages has already 464 

been reported in those birds. Future studies should investigate inbreeding effects on survival and 465 

females’ fecundity in large populations to increase the statistical power of the analyses. To 466 

conclude, we do not have any evidence, in our study system or in others, that the high inbreeding 467 

level has a detrimental impact of survival-related or recruitment-related performances in T. 468 

urogallus. 469 

 470 

Relative effects of demographic and genetic processes 471 

 472 

The rapid decline of the population (50% of loss in six years, i.e. in less than two generations) 473 

suggests a higher contribution of the demographic factors than the genetic ones in the decline of 474 

the population. This interpretation is congruent with the statements of Lande (1988; and others 475 

later, Elgar & Clode 2001, Wootton & Pfister 2013) who postulated that demographic factors 476 

usually act faster than genetic ones in biological extinction processes. Although we did not 477 

highlight inbreeding effect on adult survival and recruitment, it remains nevertheless possible that 478 

inbreeding speeds up the population decrease, by affecting female fecundity, egg hatchability, and 479 
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chick survival – three parameters not considered in this study and which also contribute to adult 480 

recruitment. However, in lek-breeding species, mechanisms related to sexual selection (i.e. 481 

disassortative mating or heterozygosity-based mate choice; Tregenza & Wedell 2000, Ryder et al. 482 

2009) and dispersal (i.e. context-dependent dispersal based on inbreeding avoidance, Lebigre et al. 483 

2010, Cayuela et al. 2018b) may limit the risk of inbreeding. Future studies should be undertaken 484 

to better understand if and how these behavioural mechanisms allow mitigating inbreeding 485 

depression and the contribution of genetic factors in biological extinctions. 486 

 487 
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Table 1. Description of the state of the multievent capture-recapture model. 722 

State State description 

+SP+ Captured at t-1 and t in the same small lek 

+MP+ Captured at t in a small lek that is different from the lek where captured at t-1 

+SL+ Captured at t-1 and t in the same large lek 

+ML+ Captured at t in a large lek that is different from the lek where captured at t-1 

oSP+ Captured at t in the same small lek as it occupied at t-1 when not captured 

oMP+ Captured at t in a small lek that is different from the lek occupied at t-1 when 

not captured  

oSL+ Captured at t in the same large lek as it occupied at t-1 when not captured 

oML+ Captured at t in a large lek that is different from the lek occupied at t-1 when 

not captured 

SPo Not captured at t and in the same small lek as at t-1  

MPo Not captured at t and in a small lek that is different from the lek occupied at t-1 

SLo Not captured at t and in the same large lek as at t-1 

MLo Not captured at t and in a large lek that is different from the lek occupied at t-1 

D Dead 
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Fig.1. Map of the study area showing the eleven leks (four large and seven small) studied over the 725 

6-years study period. 726 
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 728 

 729 
Fig.2. Matrices of the multievent model designed to estimate survival, dispersal (departure and 730 

arrival), and recapture probabilities in small and large leks. The model includes initial states of 731 

departure and four successive transition steps: (1) survival, (2) departure, (3) arrival, and (4) 732 

recapture. The matrix of events (described in Table 2) link field observations with model underlying 733 

states (described in Table 1). At each step, the information embedded in the composite state code 734 

was updated; the updated information appears in bold in the transition matrices. 735 

 736 

 737 
Fig.3. Recruitment matrix to estimate recruitment rate in small and large leks. The model has a 738 

similar structure to that of survival model (Fig.2). The survival matrix is replaced by a recruitment 739 

matrix with 13 states of departure and seven states of arrival. 740 
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 742 

 743 
Fig.4. Decline of the population of western capercaillie (Tetrao urogallus) over the 6-years study 744 

period (2010-2015). (A) annual size of the four large leks. (B) annual size of large and small leks. 745 
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 749 
Fig.5. Survival, recruitment and dispersal in a declining population of western capercaillie (Tetrao 750 

urogallus) over a 6-year study period (2010-2015). Model-averaged estimates and their standard 751 

errors are extracted from multievent capture-recapture models. Survival (A) marginally differs 752 

between large and small leks and shows little temporal variation. Survival does not show any 753 

significant temporal trend (small leks = grey dashed line, large leks = grey dotted line). Recruitment 754 

(B) does not vary between large and small leks. It shows substantial variation over time but no 755 

significant temporal trend (grey dashed line). Dispersal (C-D) strongly depends on lek size. 756 

Departure probability (C) is lower in large leks than in small leks. By contrast, arrival probability 757 

is higher in large leks than in small leks. The red bar shows the probability of arriving in a lek 758 

(small or large) under random expectation. 759 
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 761 
Fig.6. Effective population size (𝑁𝑒 for the four large leks, and meta-𝑁𝑒 for the whole population), 762 

asymmetrical migration rate (m), allelic richness, and inbreeding coefficient (𝐹𝐼𝑆) in a declining 763 

population of western capercaillie (Tetrao urogallus). For the four large leks, we show estimates 764 

of 𝑁𝑒, m, 𝐹𝐼𝑆, allelic richness (A, uncorrected richness; 𝐴𝑟 richness corrected for rarefaction), and 765 

expected heterozygosity (𝐻𝐸). We also give 𝐹𝑆𝑇 values for each pair of large leks. 766 
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